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Abstract. We present a method for constructing a quantum Markov partition. Its elements are
obtained by quantizing the characteristic function of the classical rectangles. The result is a set of
quantum operators which behave asymptotically as projectors over the classical rectangles apart
from edge and corner effects. We investigate their spectral properties and different methods of
construction. The quantum partition is shown to induce a symbolic decomposition of the quantum
evolution operator. In particular, an exact expression for the traces of the propagator is obtained
having the same structure as the Gutzwiller periodic orbit sum.

1. Introduction

For classical hyperbolic systems, symbolic dynamics provides the proper coordinates for an
efficient description of chaotic behaviour [1,2]. Such a description does not exist at the quantum
level (with the exception of a few important semiclassical treatments [3]). This work is an
attempt to apply the techniques of symbolic dynamics in quantum mechanics. The ultimate
goal of this kind of investigation is to rewrite the equations of quantum mechanics in terms of
adequate symbols for a given (chaotic) problem.

The basic idea of symbolic dynamics is to encode a dynamical trajectory as an infinite
sequence of symbols in order that there is a correspondence between properties of the actual
motion, e.g., periodicity, and properties of the symbolic motion. The association between phase
space coordinates and symbols is made with the help of a partition of phase space (details are
presented in section 4). We are thus faced with the problem of defining properly the quantum
analogues to bounded regions of phase space. The essential difficulties in doing this are the
limitations imposed by the uncertainty principle. Strictly speaking, quantum mechanics is not
only in contradiction with the notion of a phase space point but also with that of a finite subset
of phase space.

In a previous paper [4] a symbolic decomposition along these lines was studied, but
no special constructions were necessary because the invariant manifolds were aligned with
the coordinate axes, thus turning the elements of the partition into simple projectors. Here we
generalize the method of [4] by constructing certain objects (we call themquantum rectangles)
which are the quantum equivalents to the classical elements of a Markov partition. Then we
investigate their properties and different possibilities for their construction. The quantum
rectangles behave approximately as projectors over the corresponding classical regions apart
from diffraction effects which are characteristic of quantum phenomena.

0305-4470/99/427273+14$30.00 © 1999 IOP Publishing Ltd 7273



7274 R O Vallejos and M Saraceno

Once the quantum rectangles have been defined, it is straightforward to construct a
quantum Markov partition. In perfect analogy with the classical case, this partition leads
to a symbolic decomposition of the propagator. Eventually, we obtain anexacttrace formula
having the same structure as Gutzwiller’s.

The rest of the paper is structured as follows. In section 2 we argue that the quantum
analogue of a finite region of phase space can be constructed in a natural way by simply
quantizing the characteristic function of that region. In section 3 we show that in the
semiclassical limit the quantized regions display properties consistent with the classical
ones. Section 4 describes the application of the quantum Markov partition to decompose
the propagator. Finally, section 5 contains the concluding remarks.

2. Construction

The first step towards the construction of a quantum Markov partition consists of defining the
quantum analogue for a finite regionR of the classical phase space (to be considered later
as belonging to the partition). For the sake of simplicity, we restrict our analysis to two-
dimensional phase spaces with the topology of a torus (we further assume that this is the usual
unit torusT 2 = S1×S1). Extensions to spaces of higher dimensionality or to other topologies
can also be considered. We want to construct an operator which is the quantization of the
characteristic functionχR of the regionR,

χR(q, p) =
{

1 if (q, p) ∈ R
0 otherwise.

(1)

Let us just mention two simple properties of the characteristic functions: distributivity with
respect to the set intersection and normalization

χR1χR2 = χR1∩R2 (2)∫
dp dq χR(p, q) = AR (3)

the integral is over the torus andAR is the area (volume) of the regionR. For the moment
these regions are arbitrary but eventually they will become the elements of a partition of the
phase space.

To establish the connection with quantum mechanics we make use of a phase space
representation, that is, a basis{B̂(qk, pj ), 1 6 k, j 6 N} for operators acting on the Hilbert
spaceH of dimensionN = 1/(2πh̄). Theq andp representations on the torus are discrete,
and mutually related through a discrete Fourier transform [7]:

〈pj |qk〉 = 1√
N

exp(−2π iNpjqk). (4)

Any operatorÔ can be written as a linear combination of the elements of the basis

Ô =
N∑

k,j=1

O(qk, pj )B̂(qk, pj ). (5)

Conversely, for a given symbolO(qk, pj ), equation (5) defines an operatorÔ. We require the
operator basis to decompose the identity

N∑
k,j=1

B̂(qk, pj ) ∝ 1IH. (6)
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Two examples of operator bases will be considered: The Kirkwood representation, associated
to the basis{|qk〉〈qk|pj 〉〈pj |}, and a representation of projectors over coherent states,
{|qk + ipj 〉〈qk + ipj |}. In both cases the discretization used isqk = k/N andpj = j/N ,
1 6 k, j 6 N , corresponding to periodic boundary conditions on the torus. To construct the
set of coherent states we start from a circular Gaussian packet centred at( 1

2,
1
2), say in theq

representation. Then, this function is evaluated in the discreteq mesh and normalized. The
whole set of coherent states is obtained by successive translations of the initial state to all the
points(qk, pj ) of the mesh [5].

Both representations allow a natural construction of the quantizationR̂ of a phase space
regionR:

R̂K =
N∑

k,j=1

χR(qk, pj )|qk〉〈qk|pj 〉〈pj | (7)

R̂z = 1

N

N∑
k,j=1

χR(qk, pj )|qk + ipj 〉〈qk + ipj |. (8)

The normalizations are such that the operator associated to the whole torus is the identity 1IH
in both cases. The factor 1/N in the coherent case is due to the overcompleteness of that
representation. WhilêRz is Hermitian and treats symmetricallyp andq, R̂K is not. Therefore,
in applications we use the symmetrical combination

R̂sK = (R̂K + R̂†
K)/2 (9)

(we come back to this point later).
Because of the phase space construction, we expect that the quantization of the

characteristic functions that we have adopted will yield operators that are approximately
projectors on the classical regions and that this correspondence will improve asN → ∞.
However, the construction is representation dependent, and treats differently the quantum
diffraction effects produced by the edges and corners of the classical region. We will show
that the Gaussian region̂Rz tends smoothly to its classical counterpart. On the other hand, the
convergence of̂RK , which has been constructed from a sharp distribution, shows characteristic
rapid oscillatory structure.

3. Properties

The spectral analysis of the quantum rectangles are the key to understanding their general
properties. Given that analytical studies seem extremely difficult, we resorted to numerical
calculations: after choosing a classical regionR, we used the defining equations (7)–(9) to
construct the matrices of the operatorsR̂z andR̂sK , say in theq representation. As an example,
let us exhibit the case of a quantum rectangle defined through the Kirkwood representation:

〈qk|R̂K |ql〉 =
N∑
j=1

χR(qk, pj )〈qk|pj 〉〈pj |ql〉. (10)

The equation above shows that the matrix ofR̂K is just the product of two simple matrices:
the usual Fourier matrix (4), and a Fourier matrix〈qk|pj 〉 in which those elements ‘outside the
regionR’ have been substituted by zeros (this operation is done by the characteristic function
χR). The matrix of the Gaussian rectangleR̂z does not admit such a simple expression, but it
can also be easily constructed—one only needs the elements〈ql|qk + ipj 〉 (see [5]). In both
cases, eigenvalues and eigenvectors are obtained by numerical diagonalization of a complex
Hermitian matrix of dimensionN = 1/h (in our examples 906 N 6 240).
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Figure 1. Eigenvalues of a triangular region (inset)
constructed from the coherent basis. We plot the
eigenvaluesλk as a function of the normalized eigenvalue
numberk/N , whereN = 1/(2πh̄) is the semiclassical
parameter. We have consideredN = 90, 120, 160, 240.
AsN grows the distribution of eigenvalues tends to a step
function, the position of the step being determined by the
area of the classical region which is1

8 = 0.125 (indicated
with an arrow). Curves have been drawn to guide the eye.

Figure 2. Husimi representation of three eigenfunctions
of the triangular region of figure 1. (This is a linear grey
plot, with black and white corresponding to the highest
and smallest amplitudes, respectively.) The associated
eigenvalues areλk = 1.000, 0.498, 0.728 × 10−12;
respectivelyk = 4, 31, 90 (N = 240). The border of the
classical region is shown for reference (full black line).

We begin by discussing our numerical results for the Gaussian regions. For the case in
which R is a triangle, figure 1 shows the way in whicĥRz behaves in the limitN → ∞.
There we plot the eigenvaluesλk (associated to the eigenvectors|ψk〉) in decreasing order.
Most of the eigenvalues take the values≈0 or≈1. Intermediate values exist, but theirrelative
number goes to zero in the semiclassical limit. Therefore, semiclassicallyR̂z behaves as a
projector on the triangle. Figure 2 shows that the Husimi representations|〈q + ip|ψ〉|2 of the
corresponding eigenfuctions are localized on nested triangles concentrically with the boundary
of the classical region. The situation is very similar to that of integrable Hamiltonians, where
the Husimi density of an eigenfunction is localized over the associated quantized torus and
decays exponentially as one moves away from the torus. Exploiting this analogy we can derive
a semiclassical quantization rule for the eigenvalues and eigenfunctions of a quantum region.
Notice first that the eigenvalue equation forR̂z is

1

N

∑
(q,p)

χR|q + ip〉〈q + ip|ψk〉 = λk|ψk〉 (11)

implying that

1

N

∑
(q,p)∈R

|〈q + ip|ψk〉|2 = λk (12)

(if the sum were unrestricted the LHS above would be equal to one). Let us now make the
following assumptions. Sums can be substituted by integrals (we are interested in the limit
N →∞). The Husimi of thekth eigenfunction is associated to a quantized ‘torus’ lying at a
distancedk from the border of the region. Finally, in the direction perpendicular to the torus,
ŷ (y = 0 on the border of the the region), the Husimi is a normalized Gaussian:

|〈q + ip|ψk〉|2 ∝ exp[−(y − dk)2/h̄]/
√
πh̄ (13)
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(dk < 0 if the torus lies inside the region). Combining equations (12), (13) we arrive at the
semiclassical quantization rule

λk ≈
∫ 0

−∞
dy

1√
πh̄

exp[−(y − dk)2/h̄] = 1

2
− 1

2
erf

(
dk√
h̄

)
. (14)

To determinedk we approximate each quantized torus by a scaled image of the border of the
region, and set the area between two consecutive tori to 2πh̄. We give expressions fordk for
the simplest shaped regions: a square, the triangle of figure 1, and a circle

dk =



√
kh− L

2
square

√
2kh− L
2 +
√

2
triangle√

kh

π
− R circle

(15)

whereR is the radius of the circle andL is the side of both the square and the triangle (see the
inset of figure 3).

In figure 3 we compare the analytical expression (14) with the numerical results for
N = 90 and three different regions, verifying that the agreement is very good. However, some
deviations can still be observed which we associate with the relatively small value ofN . These
deviations are more important in the case of the triangle (e.g., aroundk = 22) because of its
smaller area and acute corners. In particular, our numerical results, well described by (14),
show that the width of the transition region from 1 to 0 is independent of ¯h; in other words,
the relative number of border eigenstates goes to zero as 1/N . In this sense we say that the
quantum regions behave as projectors in the semiclassical limit.

The quantization of classical regions with sharp boundaries by way of the coherent states
presented above has the advantage of producing very smooth and analytically understandable
results. The sharp edges are blurred by the Gaussian smoothing and the resulting quantum
rectangles are always ‘soft’ on the scale of ¯h.

Other representations, namely Kirkwood and Wigner [6], allow higher definition but
display characteristic diffraction effects at the edges and corners. Figure 4 shows the
eigenvalues of the operator̂RsK of the triangular region. Notice that the distribution of
eigenvalues is not smooth as in the coherent case but presents a singularity associated to
boundary effects. This singularity is inherent to the sharpness of the Kirkwood construction
and is also displayed by the non-Hermitian rectanglesR̂K andR̂†

K (not shown). Some typical
eigenfunctions are also displayed (inset). In this case, the eigenfunctions do not present the
high degree of symmetry of the coherent case, but are rather irregular. The eigenvalue still
determines the localization of the eigenfunction with respect to the border (< 1

2, interior;> 1
2,

exterior). However, as the eigenfunctions are not nested like in the coherent case, the ordering
is not always unambiguous. Except for this irregularity, the Kirkwood rectangles behave
asymptotically in the same way as the coherent ones: i.e., they tend to projectors over the
classical regions. The analytical treatment of the diffraction effects (see [17]) is more involved
and we do not attempt it at this time.

Besides the nice spectral behaviour discussed above, the quantum rectangles (either
coherent or Kirkwood) should display some additional properties for our construction to be
consistent.

(i) How does one define the ‘area’ of a quantum region? In order to quantify the dissipation
of a quantum Smale-horseshoe map, we argued in [8] that the usual operator norm Tr(R̂R̂†)/N

is a reasonable definition of area. For the Kirkwood rectanglesR̂K it is easy to prove that
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Figure 3. Eigenvalues of three regions: triangle, square,
and circle (inset). There is a one-to-one correspondence
between graphical symbols and regions. The full curves
are the analytical distributions discussed in the text (N =
90).

Figure 4. Eigenvalues of a triangular region quan-
tized from the Kirkwood basis, and four eigenfunc-
tions (Husimi representation, linear grey plot). The
ordering of the eigenvalues is such that the parame-
ter |1 − |λk || increases to the right. The eigenfunc-
tions labelled a–d correspond to the eigenvaluesλk =
1.002, 0.983, 0.317,−0.023 (k = 3, 6, 18, 60), respec-
tively (N = 120).

this definition coincides exactly with the classical areaAR. Alternatively one could simply
define the area as Tr̂R/N , in which case classical and quantum areas are identical for both
representations. Anyway, aŝR tends to a projector

Tr(R̂R̂†)/N ≈ Tr R̂/N = AR. (16)

Thus both expressions are acceptable definitions of quantum area.
(ii) For the study of spectral properties the Hermitian operatorR̂sK was preferred to the

non-HermitianR̂K and R̂†
K . The latter are more appropriate for the decomposition of the

propagators we present in section 4. However, in the limitAR � h̄, R̂K and R̂†
K will be

approximately equal, given that they only differ in the ordering ofq andp. ThenR̂K , R̂†
K , and

R̂sK are semiclassically equivalent.
(iii) Quantization and propagation must commute. IfU is a classical simplectic map and

Û its quantization, then

ÛT R̂Û−T → ÛT (R) (17)

where it is understood that one must fixT and take the limit ¯h→ 0. We illustrate this point in
figure 5, where the rectangleR1 of the Markov partition for the cat map [11] is propagated once
by the quantum cat map [13]. Notice that the bulk classical behaviour is correctly reproduced
and that additional diffraction effects are visible in figure 5(a), while the coherent rectangle in
figure 5(b) is much smoother.

(iv) We also expect quantization to commute with the classical set operations:

R̂1 ∩ R2 ≈ R̂1R̂2 ≈ R̂2R̂1 (18)

R̂1 ∪ R2 ≈ R̂1 + R̂2 − R̂1R̂2. (19)

An instance of equation (18) which is of special interest for the construction of a partition is
that of two adjacent regions, i.e. two regions whose intersection is a line segment. Consider
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Figure 5. (a) Propagation of a Kirkwood rectangle. We show a linear grey plot of|〈p|Û†R̂1KÛ |q〉|,
whereR1 is one of the five elements of the Markov partition of Arnold’s cat map (see figure 6) andÛ

is the quantized cat map (section 4). Compare this with the boundaries of the classically propagated
rectangle,U−1(R1) (dots). For the sake of future referencing we also display the boundary of the
elementR5 (dots). (b) As before but for the coherent rectanglêR1z. Now we plot the operator
symbol〈q + ip|Û†R̂1zÛ |q + ip〉. In both cases the dimension of the Hilbert space isN = 100.

the spectral decomposition of two such regionsR̂1 andR̂2:

R̂i =
N∑
k=1

λik|ψik〉〈ψik| i = 1, 2. (20)

To quantify the overlap of these regions we calculate the quantum area of the product
(intersection) operator:

1

N
Tr R̂1R̂2 = 1

N

N∑
k,k′=1

λ1kλ
∗
2k′ |〈ψ1k|ψ2k′ 〉|2. (21)

Now recall the picture of eigenstates localized on scaled images of the border of a region. If
|ψ1k〉 and |ψ2k′ 〉 are not both localized on the respective borders ofR1 andR2, the product
λ1kλ2k′ will be exponentially small. But we have seen that the number of border eigenstates
is of the order of one, implying that the quantum area is of order 1/N . Thus the intersection
of adjacent quantum regions is semiclassically negligible. (If the regions are a finite distance
apart, the quantum intersection tends exponentially to zero whenN →∞.) Even though we
lack an analytical description of the spectral properties of the Kirkwood case, our numerical
experience shows that, due to the very similar localization properties, Kirkwood rectangles
behave qualitatively in the same way.

In the next section we show an application of the quantum regions which provides
additional support to the statements above.

4. Symbolic decomposition of the traces of the propagator

Before discussing the applications of the quantum rectangles in quantum dynamics, we present
a short reminder of classical symbolic dynamics in a setting appropriate to the transition to
quantum mechanics. We only consider here the symbolic dynamics associated with a finite
Markov partition. A Markov partition for a hyperbolic mapU consists of a set of regions
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R1, R2, . . . , RP (usually called ‘rectangles’) which satisfy the following properties. The
boundaries ofRi are defined by segments of the expanding and contracting manifolds of
U . WheneverU(Ri) intersects the interior ofRj , the image cuts completely acrossRj in the
unstable direction. Similarly, the backwards imageU−1(Ri) cuts completely across the other
rectangles along the stable direction [1,2].

From the Markov partition, successively finer partitions can be obtained by intersecting
the elements of the basic partition with its positive and negative images by the map (product
partition):

Rε−K ...ε−1·ε0ε1...εM =
s=M⋂
s=−K

Us(Rεs ) (22)

whereεs can take any of the values 1, 2, . . . P . Each element of the new partition can be
labelled by a different symbolic code

ν(−K,M) = ε−K . . . ε−1 · ε0ε1 . . . εM. (23)

As the original rectangles, the refined rectangles above possess the property of decomposing
the phase space into disjoint regions (we do not take into account borders, which are zero-
measure). When acting on these rectangles, the map is simply ashift:

U−1(Rε−K ...ε−1·ε0ε1...εM ) = Rε−K ...ε0·ε1...εM . (24)

From the properties of the Markov partitions, it can be proven that in the limitK,M →∞ the
intersections of (22) are either a single point or the empty set [2]. The latter possibility means
that the transitions between certain pairs of basic regions are prohibited; the information about
allowed and prohibited sequences can be enclosed in a transition matrix

tij =
{

1 if U(Ri) ∩ Rj 6= ∅
0 otherwise.

(25)

In this way, the Markov partition allows for setting up a one-to-one correspondence between
phase space points andallowedsequences of symbols.

The existence of a symbolic dynamics allows for an exhaustive coding of the orbits of the
map. In particular, periodic orbits are in correspondence with the periodic sequences of the
same periodicity. Given an arbitrary system, it is a hard task to decide if it admits a symbolic
dynamics; even if it does, the translation from symbols to phase space coordinates is in general
extremely difficult. The example we will consider (the cat map) does not present any of these
difficulties, thus eliminating non-essential complications.

In the following we show how the symbolic dynamics of a classical map can be used
to decompose the traces of the quantized map. The quantum analogues of the elements
of the classical Markov partition are the quantum rectanglesR̂ described in sections 2 and
3. The quantum partitions are obtained by translating to quantum mechanics the steps in the
construction of the classical ones. Starting from the quantizations of the regions of the classical
basic partition, we define the quantum refinement in two steps. First, the regions (quantum
‘projectors’) are propagated using the Heisenberg equations of motion. Then, noting that
‘intersections’ of quantum rectangles correspond to matrix multiplications, we arrive at a
quantum product partition with elements written as a time-ordered multiplication of matrices

R̂ν(−K,M) = Û−KR̂ε−K ÛK . . . ÛMR̂εM Û
−M

= Û−KR̂ε−K Û R̂ε−K+1 . . . R̂εM−1Û R̂εM Û
−M. (26)

The counterpart of the classical decomposition of the phase space is the quantum decomposition
of the identity ∑

ν(−K,M)
R̂ν(−K,M) = 1IH. (27)
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The quantum propagation is also ashift:

Û−1R̂ε−K ...ε−1·ε0ε1...εM Û = R̂ε−K ...ε0·ε1...εM . (28)

Even though the quantum rectangles do not have zero ‘intersection’, the product of two elements
of the partition is semiclassically negligible. Finally, whenN →∞ with K andM fixed, the
quantum rectangles tend to the classical ones. The precise meaning of these limits, and the
way they are achieved, were discussed in section 3.

The key property of the quantum partition we have constructed is the symbolic
decomposition of the traces of the propagator. Consider the discrete path sum for the trace of
a power of the propagator in the coherent state representation

Tr ÛL = 1

NL

∑
〈α0|Û |αL−1〉〈αL−1|Û . . . |α1〉〈α1|Û |α0〉 (29)

where the sum runs over all theclosedpathsα0, α1, . . . , αL−1, αL ≡ α0, which are discrete
both in time and in the coordinates (we recall thatα ≡ q + ip moves on the discreteq–p grid).
Semiclassically, the trace of̂UL will be dominated by the periodic trajectories (of periodL)
of the classical mapU and their neighbouring paths. The Markov partition allows us to stick
symbolic labels not only to trajectories but also to paths. So, one has a natural way of dividing
the space of paths into disjoints subsets, each one characterized by a symbolν of lengthL and
containing the periodic trajectory associated withν. This observation allows us to reorganize
the sum in (29) in the following way. Sum first over paths having the same symbolic code
ν = ε0ε1 . . . εL−1, i.e. such thatα0 ∈ Rε0, α1 ∈ Rε1, etc. Then sum over allν:

Tr ÛL = 1

NL
Tr
∑
ν

∑
α0∈Rε0

. . .
∑

αL−1∈RεL−1

Û |αL−1〉〈αL−1|Û . . . Û |α0〉〈α0|. (30)

But the inner sums define the quantum rectangles, then

Tr ÛL = Tr
∑
ν

Û R̂εL−1 . . . Û R̂ε1Û R̂ε0 ≡
∑
ν

Tr ÛL
ν . (31)

Thus the mechanism of path grouping is automatically implemented by the quantum
‘projectors’ over the classical rectangles. Equation (31) is completely equivalent to (29),
the only difference being the grouping of closed paths into families sharing the same symbolic
codeν. Each one of these families contributes to a partial trace TrÛL

ν . Analogous results are
obtained in the Kirkwood case. In fact, starting from a path sum in the Kirkwood representation,

Tr ÛL =
∑
〈q0|p0〉〈p0|Û . . . Û |q2〉〈q2|p2〉〈p2|Û |q1〉〈q1|p1〉〈p1|Û |q0〉 (32)

one arrives at the same result of equation (31) but with the Kirkwood rectangles instead of
the coherent ones. Using the cyclic property, the partial traces of (31) (or the Kirkwood
counterparts) can be rewritten in terms of the refined rectangles of equation (26)

Tr ÛL
ν(−K,M) = Tr[ÛLR̂ν(−K,M)]. (33)

The integersK,M must satisfyK +M = L−1, but are otherwise arbitrary. By varyingK and
M (L fixed) one constructs different types of rectangles, e.g., the choiceK = 0,M = L− 1
produces ‘unstable’ rectangles (stretched along the unstable manifolds)

R̂·ε0ε1...εL−1 = R̂ε0Û
1R̂ε1Û

−1 . . . ÛL−1R̂εLÛ
−(L−1). (34)

Similarly, withM = 0 andK = L− 1, ‘stable’ rectangles are obtained. Anyway, stable and
unstable rectangles are related by the unitary transformation (28), ensuring that TrÛL

ν(−K,M)
does not depend on the particular choice ofK,M. Moreover, it is satisfactory to verify that
the trace ofÛL

ν remains unchanged under cyclical shifts of the ‘bits’ε0ε1 . . . εL−1 of ν (as is
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obvious from (31)); this is a reflection of the classical invariance property: by shifting the bits
of ν one just moves around the periodic trajectoryν.

The refined rectanglêRν(−K,M) has as its classical limit the characteristic function of the
classical regionRν(−K,M). Thus, its role in (33) consists essentially in cutting the matrixÛL

into pieces. The Kirkwood rectangles act on the Kirkwood matrix〈p|ÛL|q〉/〈p|q〉:

Tr(ÛLR̂ν(−K,M)) =
∑
q,p

〈p|ÛL|q〉〈q|R̂ν(−K,M)|p〉 ≈ 1

N

∑
q,p

〈p|ÛL|q〉
〈p|q〉 χRν(−K,M) (q, p). (35)

The coherent rectangles perform a similar action but on the operator symbol〈α|ÛL|α〉:

Tr(ÛLR̂ν(−K,M)) ≈ Tr

(
ÛL 1

N

∑
α∈Rν(−K,M)

|α〉〈α|
)
= 1

N

∑
α

〈α|ÛL|α〉χRν(−K,M) (α). (36)

In both cases the semiclassical partial trace is obtained by summing over that piece of the
matrix which corresponds to the classical rectangle. Thus each symbolic piece captures the
local structure of the propagator in the vicinity of a periodic point labelled byν and by stationary
phase yields the Gutzwiller–Tabor contribution of the corresponding periodic orbit. Forbidden
symbols lead to semiclassically small contributions [9].

The symbolic decomposition we have presented has the nice feature of reducing the
problem of understanding the asymptotic limit of the traces of the propagator to the analysis
of individual ‘partial’ traces TrÛL

ν , each one characterized by a code given by the symbolic
dynamics, and ruled by a periodic point.

We have restricted our discussion to the case of a finite Markov partition. However,
the crucial property a partition must display to induce a symbolic dynamics is that of being
generating, i.e., it must satisfy that, in the limitK,M → ∞, the intersections of (22) are at
most points [2]. Moreover, for some semiclassical applications,anypartition of phase space
into small cells may be sufficient [3]. In all cases our method allows us to construct the
corresponding quantum partition, and then to obtain an exact symbolic decomposition of the
propagators.

4.1. A numerical application

The simplest system in which the quantum partitions can be applied to decompose the
propagators is perhaps the baker map [4]. Its Markov partition consists of two rectangles,
which, due to the fact that the expanding and contracting directions are parallel to the coordinate
axes, are solely defined by conditions onq. As a consequence, the quantum rectangles for the
baker map reduceexactlyto projectors on subspaces [4]. This greatly simplifies the symbolic
analysis of the quantum baker map, allowing very detailed studies of its partial traces [4,10].

However, the baker map is too special for illustrating the properties of the rectangles:
many of them are satisfied trivially. Moreover, the partial traces of the baker map display some
unpleasant anomalies that difficult the semiclassical analyses [4,10].

Still simple enough, the Arnold cat mapU [11] is more appropriate for a general illustration
of the method and can be investigated numerically. The classical cat map is defined by(

q ′

p′

)
=
(

2 1
1 1

)(
q

p

)
mod 1. (37)

This is a linear, hyperbolic, and continuous map of the torus. As its invariant manifolds are
not aligned with the coordinate axes, the rectangles of the Markov partition [12] (shown in
figure 6) are not projectors. This makes the cat map non-trivial for our purposes.
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Figure 6. The rectanglesR1, . . . , R5 constitute a
Markov partition of the Arnold cat map. Also shown
are parts of the invariant manifolds of the fixed point in
the origin (dashed lines), and the period two fixed points
with symbolic labelsν = 15 andν = 51. Here the torus
is considered as the plane with points identified if their
coordinates differ by integers.

Before proceeding, we must point out that the quantum cat map presents one very
particular feature: Gutwiller’s semiclassical formula gives the exact traces [13]. For this
reason the cat map is not suitable for studying corrections to the trace formula. In principle,
any decomposition into partial traces will introduce errors which, however, will cancel out
when added up to produce the whole trace. Thus this model may be useful as a test of the
mechanisms that lead to such cancellation.

Let us now go to the details of the numerical example. The Markov partition of the cat map
consists of the five rectangles of figure 6, which, together with the ‘grammar rules’ embodied
in the transition matrixt ,

t =


01001
01001
10110
10110
10110

 (38)

define the symbolic dynamics of the cat [12]. Of course, the simplest trace to which our
construction can be applied is the first one:

Tr Û =
5∑

ε0=1

Tr(Û R̂ε0). (39)

However, the decomposition of this trace does not involve intersections of quantum regions,
and thus is not sufficient for illustrating all the workings of the quantum partition. We shall
then skip the first trace and concentrate on the decomposition of the second one:

Tr Û2 =
5∑

ε0,ε1=1

Tr(Û R̂ε0Û R̂ε1). (40)

The rectangleŝRε are the quantum versions of the regions of figure 6 and can be constructed
from either the coherent state representation or Kirkwood’s. The construction of the quantum
propagatorÛ for linear automorphisms of the torus is presented in [14] (notice that Arnold’s
cat (37) is only quantizable forN even).

Each partial trace can be written asymptotically as a Gutzwiller term plus corrections that
go to zero asN →∞:

Tr Û2
ν = Aν exp(2π iNSν) + δν(N) (41)

whereAν is the amplitude andSν the action of the periodic orbit [15]. We remark that in the
case of cat maps the correctionsδν will cancel out exactly when summing overν because the
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semiclassical trace formula is exact in this special case. In general this will not be true, and
the method allows to study the corrections coming from each periodic orbit.

In order to quantify the errors associated to the symbolic partition of the space of paths,
we study numerically the semiclassical limit of one element of the partition, namely TrU2

51.
This trace is dominated by the periodic trajectory shown in figure 6 and its neighbourhood; its
asymptotic limit is the Gutzwiller formula (41) withA51 = 1/

√
5 andS51 = 3

10 [16].
We can understand the asymptotic behaviour of the correctionsδν by recalling that our

decomposition essentially amounts to cutting the matrix ofÛ into rectangular blocks. Let us
first estimate the corrections in the Kirkwood’s case. The Kirkwood matrix ofUL has constant
amplitude [14] and phase that oscillates rapidly except in the vicinity of the fixed points of
UL [4]. Computing the partial trace amounts to summing up the matrix elements〈p|U2|q〉
that lie inside the regionR51 ≡ R5∩U−1(R1) (shown in figure 5). In the semiclassical limit we
can replace the sum by an integration and do the latter using the stationary phase method. In
this approximation we must only take into account the contributions of thecritical points[17].
The most important contribution comes from the the periodic orbit (critical point of the first
kind) and its neighbourhood. This gives rise to the Guzwiller term, which is of order zero in
h̄ (O(h̄0)). The correctionsδ51(N) are associated to critical points of second and third kind.
The critical points of the second kind, i.e., points where the phase is stationary with respect to
displacements along the borders of the rectangle, contribute with termsO(h̄1/2). The corners
(third-kind critical points) contribute with termsO(h̄3/2). (In the baker map the situation is
more complicated because of the coalescence of critical points of a different kind, namely that
some fixed points lie on the borders of the rectangles. These anomalous points give rise to
termsO(log h̄) [4,10].) Having exhausted the critical points, we conclude that the border errors
in Kirkwood’s representation areO(h̄1/2). On the other hand, in the coherent case, one expects
the amplitudes〈α|ÛL|α〉 to decay exponentially fast as one moves away from the classical
trajectory. The phases do still oscillate fast. However, due to the exponential damping, the
border effects in the coherent decomposition should then beO[h̄1/2 exp(−C2/h̄)], whereC
is proportional to the distance from the fixed point to the border. Of course, this regime will
only be reached once the stationary phase neighbourhood of the fixed point (whose radius is
O(h̄1/2)) is completely contained inR51.

For the coherent case we calculated numerically the correctionδ51 as a function ofN . Up
toN = 100 we computed the partial trace exactly, i.e.

1

N2

∑
α∈R1,β∈R5

〈α|Û |β〉〈β|Û |α〉. (42)

From then on, due to computer time limitations, we resorted to a local semiclassical
approximation for the coherent-state propagator. This is equivalent to replacing the torus
propagator〈α|Û2|β〉 by a plane propagator which is the quantization of the linear dynamics in
the vicinity of the period-two trajectoryν = 51. The errors introduced in this approximation
arise from ignoring the contributions of ‘sources’ located at equivalent (mod 1) positions in
the plane [14]. These errors are alsoO[h̄1/2 exp(−C ′2/h̄)], but withC ′ much larger thanC,
and thus can be neglected. Once the partial trace was calculated, we obtained the correction
δν by subtracting the Gutzwiller term.

In figure 7 we show the numerical results in a way that permits a direct comparison with
our analytical considerations above. In fact, the log–linear plot suggests that the corrections
δν in the coherent state decomposition are indeed exponentially small in the semiclassical
parameter 1/h̄. Accordingly, the decomposition which uses rectangles constructed from the
Kirkwood representation introduces border errors of order ¯h1/2; these are the typical diffractive
corrections due to sharp boundaries: e.g., like those associated to the passage of a wavefront
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Figure 7. Corrections to the Gutwiller trace formula,
ν = 51.

through a hole in a screen (in this case the hole is the classical region and the ‘wave’ is the
mixed representation propagator). We recall that Gutzwiller’s trace formula is exact for the
cat maps. For typical maps one expects corrections to this formula of order ¯hk, with k > 1;
e.g.,k = 1 for theperturbedcat maps [18]. Both Markov partitions considered here, either
based on coherent-state or Kirkwood rectangles, allow us to study such corrections term by
term. In the coherent case, the partitioning of the space of paths does not introduce significant
border effects, given that the contributions of neighbouring paths decrease exponentially as one
moves away from the central trajectory. On the other hand, the use of a sharp representation like
Kirkwood’s produces non-negligible boundary contributions to each partial trace. Of course,
these boundary terms will cancel out when the partial traces are summed up to give the whole
trace. Even so, they have to be carefully identified to isolate the genuine partial corrections to
the Gutzwiller trace formula.

5. Concluding remarks

We have begun the application of symbolic dynamics techniques, essential in classical chaotic
problems, in quantum mechanics. As a first step we constructed quantum analogues to regions
of classical phase space: they are the quantizations of the characteristic functions of the classical
regions. We have used Kirkwood’s and a coherent state representation. The study of metrical
and spectral properties show that they behave asymptotically as projectors over those regions.
They also present the diffraction effects typical of ondulatory phenomena.

Even though we only considered a very special phase space (the two-torus), it is clear
that our construction can be extended to other quantizable spaces that admit a phase space
representation which decomposes the identity.

For a finite-type subshift, the quantization of the rectangles of the classical Markov
partition gives rise to a quantum partition which induces a symbolic decomposition of the
propagator. This partition allows for writing a trace formula which is both exact and structurally
identical to the Gutzwiller trace formula. Thus the problem of understanding the semiclassical
limit of the traces of a propagator is reduced to the analysis of partial traces coded by the
symbolic dynamics. The objects we have constructed tend asymptotically to their classical
counterparts and respond to the same dynamics. In this way, one can verify step by step many
manipulations that up to now could only be done at a semiclassical level.

Before concluding we would like to emphasize that the construction presented here is by
no means restricted to phase space regions that are Markov partitions. Any region of phase
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space selected for ‘attention’ can be handled in the same way and its quantum properties
explored. For example, if a closed problem is turned into a scattering one by the removal of
a section of the boundary or the attachment of a soft waveguide, the decomposition leads to
the consideration of coupled interior and closure problems projected from the corresponding
phase space regions [19]. Another application is to think of the phase space projectors
as ‘measurements’ occurring along the quantum history of the system, and the associated
decoherence that results.
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